

2

Figure 3 : isomères optiques (in Lehninger et al., WH Freeman and Compagnie, 2008)

Figure 5 : conformation chaise et bateau du glucopyrannose (in Zubay, WCB Publishers, 1998)

Figure 4 :cyclisation du glucose (aldohexose) en glucopyranose

4

Figure 6 : cyclisation du fructose (cétohexose)

© Formation d'une liausei azydagne euche la fanchieu cetore
et le quor perment-att du CS
i CH20H

$$c = 0$$

 $OH_{-S}C_{-H}$
 $H_{-S}C_{-OH}$
 $H_{-S}C_{-OH}$
 $H_{-S}C_{-OH}$
 $CH20H$
 $C_{-S}C_{-H}$
 $H_{-S}C_{-OH}$
 $H_{-S}C_{-OH}$
 $CH20H$
 $CH20H$

Figure 7 : dérivé des oses (in Lehninger et al., WH Freeman and Compagnie, 2008)

Chapitre SVD-2.2-glucides

Figure 8 : Trois diholosides importants

GlcNA

Gal

Fuc

Figure 9a : les groupes sanguins dépendent de groupements osidiques

Lipid or

protein

Glc

GlcNAc = N-Acetylglucosamine GalNAc = N-Acetylgalactosamine

Glc = Glucose

Fuc = Fucose

Gal = Galactose

membrane du spermatozoi de

B antigen

M probéase
➡ galactosyl bransheiase
➡ néapheur galactose
¶ galactose
¶ galactose
₩ N.acétyl glucesamina Z 73

ZP : protéine de la Zone Pellucide = enveloppe de glycoproétines autour de l'ovocyte

Figure 10 : l'amidon, une molécule de réserve stable et hydrolysable

Figure 11 : organisation de l'amidon dans un amyloplaste (in Robert et Roland, Doin, 1998)

Structure du grain d'amidon

Plusieurs stries d'accroissement peuvent être discernées autour du hile. La portion comprise entre deux stries correspond à un anneau de croissance. Chaque anneau de croissance correspond à une lame (ou couche) amorphe et à une lame semi-cristalline. Ces dernières sont elles-mêmes constituées de sucession de de lamelles cristallines et de lamelles amorphes.

Le schéma de droite présente la structure des molécules d'amylopectine qui sont des molécules ramifiées (branches courtes/longues, ramifiées/non ramifiées, nombre de ramification variable).

(ь)

Figure 13 : la cellulose, un polymère de structure (liaisons ß1,4) stabilisé par des liaisons H intra et inter chaîne

Unité cellobiose

1 microfibrille = 30-60 molécules de cellulose 1 macrofibrille = association de 4 microfibrilles

Figure 14 : les composants de la matrice amorphe des parois végétales: pectine et hémicellulose

Réseau de chaînes de pectines

16

Figure 17 : exemple de protéines auxquelles se fixent les GAG (héparan sulfates)

Familles de Protéines	Protéines	fonction
Protéases/Estérases	AT-III, SLPI, C1i, VCP	Coagulation, voies métaboliques, voies du complément
Facteurs de croissance	FGFs, VEGF, HGF, PDGF	Prolifération, différenciation et migration cellulaire, angiogénèse
Morphogènes	Wnt, Hedgehog, BMP	Développement, embryogénèse
Cytokines	II-5, IL-8, IL-10, IFNγ	Inflammation, cicatrisation
Chimiokines	SDF, RANTES, PF4	Inflammation, « Leukocyte Homing »
Protéines fixant les lipides	Annexin V, ApoE	Transport et métabolisme des lipides
Protéines d'adhésion	Sélectines, Fibronectine, Vitronectine, Collagène type V, Laminine	Adhésion, migration, cohésion tissulaire
Pathogènes	VIH, virus de la Dengue, HSV, papillomavirus, Streptococcus pneumoniae, Plasmodium falciparum	Infection

Exemple du rôle des GAG dans la fixation du FGF sur son récepteur

THEJOURNALOFBIOLOGICALCHEMISTRY VOL.292,NO.6,pp.2495–2509,February10,2017

FIGURE 7. Proposed model and structure/activity relationship of heparan sulfate-mediated FGF-FGFR signaling through an FGF₂-HSPG₂-FGFR1c₂ complex. Heparan sulfate structural characteristics required to facilitate signaling complex formation differ between FGF1 and FGF2. FGF1 (*left*) requires a terminal NS domain of 10–11 disaccharides and a terminal GlcNS for signaling. In contrast, FGF2 (*right*) utilizes a shorter non-reducing NS domain (~5 disaccharides) and is tolerant of a non-reducing end GlcNAc.

