

Figure 1 : plan d'organisation d'un Vertébré

Homologies de structures entre un bras humain, une patte avant de phoque, une aile d'oiseau et une aile de chauve-souris ; les structures homologues portantes sont de même couleur. Ces quatre membres sont homologues en tant que membres antérieurs et proviennent d'un ancêtre quadrupède commun. Cependant, les adaptations au vol du membre antérieur de l'oiseau et de la chauve souris ont évolué indépendamment, bien après que les deux lignées se soient écartées de leur ancêtre commun. C'est pourquoi, en tant qu'ailes, elles ne sont pas homologues mais analogues.

Figure 2 : cycle de reproduction et de développement d'un Amphibien

(www.snv.jussieu.fr)

Xénope adulte

Fonctions des constituants accumulés	Compartiments impliqués dans le stockage ou l'utilisation des constituants	constituants moléculaires et macromoléculaires
Métabolisme énergétique	Mitochondries plaquettes vitellines	métabolites : acides aminés, oses, groupements phosphates, vitamines macromolécules de réserve ; glycogène, protéines vitellines (phosvitine, lipovitelline)
Expression de l'information génétique – synthèse des protéines	Réticulum endoplasmique Appareil de Golgi	protéines : Histones, ADN et ARN polymérases, facteurs de transcription Protéines ribosomales ARN : ARNt chargés avec des acides aminés ARNr ARNm codant des facteurs de transcription, des molécules de signalisation etc (Vg1, VegT, BMP-4) ribosomes
Dynamique intracellulaire et adhérence intercellulaire	Granules corticaux (contenant des mucopolysaccharides, des glycoprotéines, des enzymes inactivées)	Cytosquelette : microfilaments d'actine microtubules filaments intermédiaires (cytokératines) Protéines d'adhérence (intégrines), protéines matricielles (fibronectine)

Figure 3 : Constituants accumulés dans l'ovocyte II d'amphibien au cours de la vitellogenèse

4

Figure 5 : exocytose des granules corticaux (in Darribère, Belin, 2002)

Représentation schématique de l'exocytose des granules corticaux. La fusion entre le spermatozoïde et l'ovocyte se réalise dans l'hémisphère animal. Dans le cortex, seuls les granules corticaux sont figurés. La formation de la membrane de fécondation et la création de l'espace périvitellin constituent une barrière physique à la polyspermie.

Figure 6 : formation de la traînée spermatique (in Darribère, Belin, 2002)

Représentation schématique de la rotation corticale. Après la fécondation, la rotation corticale conduit à la mise en place du croissant dépigmenté (croissant gris). Sa position détermine la future région dorsale de l'embryon.

Figure 7 : mise en évidence de l'importance de la rotation corticale (in Segarra et al., Ellipses)

tranomoni dan rayono e

Cellule-œuf

Embryons au stade bourgeon caudal

Figure 8 : redistribution des déterminants cytoplasmiques et conséquences

Figure 10 : La segmentation

Figure 11 : Expériences de ligature de Spemann (1903)

BCPST1, Lycée Hoche

11

Chapitre II.D.2.A

Figure 14 : Expériences de Nieuwkoop

Figure 15 : Carte des territoires présomptifs

Figure 16 : La gastrulation chez le Xénope : à colorier!!!

Figure 17 : La gastrulation : mouvements observables extérieurement

(in Gilbert, De Boeck, 2004)

La lèvre blastoporale

La lèvre blastoporale dorsale d'une gastrula de xénope, vue au microscope électronique à balayage. La différence de taille entre blastomères animaux et végétatifs est bien visible. (Photographie avec l'autorisation de C. Phillips).

Épibolie de l'ectoderme. (A) Les lèvres dorsale, latérales et ventrale du blastopore apparaissent en succession, modifiant la topographie des régions avoisinantes. Après formation de la lèvre ventrale, le blastopore a une forme circulaire et l'endoderme est progressivement invaginé. Les nombres ii à v correspondent, respectivement, aux images B à E de la figure 10.7. (B) Résumé des mouvements d'épibolie de l'ectoderme, et d'involution du mésoderme, qui contourne le rebord du blastopore et vient se placer juste au-dessous de la surface qu'il vient de quitter. L'endoderme, situé sous le blastopore, est immobile et enveloppé par ces déplacements cellulaires. (A d'après Balinsky 1975 ; photographies avec l'autorisation de B. I. Balinsky).

Figure 18 a : Les cellules en bouteilles

Figure 18 b : Les cellules en bouteilles observées au MEB in Atlas d'embryologie des Vertébrés , De Vos et Gansen, Masson 1980

Gastrula fracturée au niveau de blastopore (flèche) au début de sa formation (x 160)

Gastrula fracturée au niveau de blastopore (flèche) au stade en encoche (x 160)

Détail du cliché précédent (x 320)

Figure 19 : La gastrulation en coupes (in Darribère, Belin, 2002)

Chorde observée sur le toit de l'archentéron (x300)

Figure 20.a : Division et intercalation de cellules au cours de l'épibolie

(in Gilbert, De Boeck, 2004)

L'épibolie de l'ectoderme résulte de diviins et d'intercalations cellulaires. (A, B) Les divisions cellulaires dans l'ectoderme présomptif, mises en évidence par un marqueur de la mitose, l'histone 3 phosphorylée (les noyaux apparaissent en moir). Dans les gastrulas jeunes (A : stade 10,5) la plupart des mitoses se voient dans le futur ectoderme de la moitié animale. À un stade plus avancé (B : stade 12), on peut les observer dans tout l'ectoderme (noter au passage l'absence de mitoses dans le mésoderme dorsal). (C) Le toit du blastocèle d'un embryon de xénope ; micrographie électronique à balayage. Noter les changements affectant la forme et la position des cellules. Les stades 8 et 9 sont des blastulas ; les stades 10 à 11,5 des gastrulas de plus en plus âgées. (A, B d'après Saka et Smith 2001, photographies avec l'autorisation des auteurs ; C d'après Keller 1980, photographies avec l'autorisation de R. É. Keller).

Figure 20.b : extension et convergence au niveau du mésoderme de la chorde

Représentation schématique des mouvements de convergence-extension dans la zone marginale dorsale. Un groupe de 13 cellules parmi l'ensemble des cellules du territoire dorsal (grisé) est suivi depuis le début de la gastrulation jusqu'au début de la neurulation (A à C). Le plan médian est représenté par la ligne bleue discontinue. Au stade jeune gastrula, les cellules forment un amas cohésif (A). Les cellules les plus latérales de ce groupe deviennent bipolaires et se dirigent vers le plan médian. Elles sont convergentes (flèches bleues). Au cours de la gastrulation, ces mêmes cellules a changé. Il s'est s'allongé le long du plan médian (B). Au début du stade neurula, le phènomène s'est considérablement accentué. Les cellules se sont espacées et alignées le long du plan médian (C). Le groupe de cellules initial a donc subi une extension antéropostérieure (doubles flèches noires) (D'après Shih et Keller, 1992).(www.snv.jussieu.fr/bmedia/)

Figure 21 : bilan des mécanisme mis en jeu au cours de la gastrulation

Figure 22 : Mise en évidence du rôle de la matrice extracellulaire dans la migration des cellules mésodermiques

(in Segarra et al., Ellipses)

(A) Protocole de l'expérience. Les expériences ont été réalisées sur des embryons d'amphibiens urodèles.

(B) Schéma d'après les observations réalisées en microscopie électronique à balayage (d'après Boucaut, J.C. *et al.*, 1984). Les cellules en migration sont observées sur le toit du blastocoele donc sur la face interne de la calotte animale. On constate qu'aucune cellule ne migre sur le fragment retourné de toit du blastocoele.

Mise en évidence du rôle de la fibronectine et de son récepteur l'intégrine $\alpha_5\beta_1$. Les anticorps dirigés contre la fibronectine (FN) ou l'intégrine ($\alpha_5\beta_1$) ou des peptides tels que RGDS sont injectés dans le blastocœle d'une jeune gastrula. Les résultats montrent un blastopore circulaire sous-équatorial (flèche), un hémisphère végétatif non pigmenté, non invaginé et un hémisphère animal plissé. La dissection des embryons obtenus révèle que les cellules du mésoderme ne migrent pas sur le toit du blastocèle. Les anticorps perturbent, par encombrement stérique, l'interaction entre les cellules du mésoderme et la fibronectine de la matrice. Les peptides perturbent, par compétition, la reconnaissance de la fibronectine par son récepteur (l'intégrine $\alpha_5\beta_1$) présent à la surface des cellules du mésoderme. La migration des cellules n'a donc pas lieu en absence de liaison fibronectine-cellule. Les replis de l'hémisphère animal résultent de l'absence de migration des cellules alors que l'épibolie se réalise normalement. [D'après Boucaut et coll., 1984; Darribère et coll., 1988.]

5. Décollement en queue de migration

Les cellules migratoires sont **polarisées**. En positition antérieure, elles étendent des **lamellipodes** (membrane plasmique étalée sur le substrat) prolongées par de très fins filaments cytoplasmiques, des **filopodes**. Ces structures membranaires **sont riches en microfilaments d'actine** réalisant des réseaux, pour les lamellipodes, ou des faisceaux pour les filopodes. Le **cytosquelette est en interaction avec la matrice extracellulaire** du toit du blastocoele par l'intermédiaire de protéines transmembranaires, les **intégrines**.

La progression des cellules en migration nécessite la modification séquentielle des points d'ancrage au front de migration et à l'arrière de la cellule) :

– Extension des lamellipodes et des filopodes au niveau du front de migration ; – Formation de nouveaux points d'adhérence dans la zone d'extension ;

 Dépolymérisation des microfilaments au niveau du noyau et translocation du noyau et du cytoplasme vers l'avant de la cellule;

- Flux net de membrane plasmique vers l'avant de la cellule, par l'intermédiaire de mouvements de cytose (endocytose à l'arrière / exocytose à l'avant) ;

Perte d'adhérence à l'arrière de la cellule et décollement de la membrane plasmique.

Figure 23 : Déroulement de la neurulation (in Darribère, Belin, 2002)

Représentation schématique des différentes étapes de la neurulation. À gauche, vues externes dor-A droite, coupes transversales au niveau de l'axe XY (l'endoderme n'est pas figuré).

Figure 24 : représentation de la neurulation en coupes transversales à colorier!!!

Bourgeon caudal en coupe sagittale à titre de doc

Figure 25 : formation du tube neural, observation au MEB : à légender

Figure 26 : Expérience de Townes et Holtfreter (1955)

Figure 27 : organisation du tube neural d'un Amphibien

Représentations schématiques de l'organisation antéro-postérieure du tube neural des amphibiens : Coupe longitudinale

Exemples de quelques dérivés des crêtes neurales.				
Origine Dérivés des cellules		Structure ou type cellulaire		
Crêtes neurales céphaliques	Ectomésenchyme	Neurocrâne, cartilage et os du squelette facial		
	Tissu conjonctif	Derme, tissu conjonctif et muscles lisses des artères		
	Cellules pigmentaires	Mélanocytes épidermiques et de l'iris		
	Système nerveux périphérique	Neurones, ganglions sensoriels, ganglions sympathiques et parasympathiques, cellules gliales		
Crêtes neurales troncales	Ectomésenchyme	Squelette de la nageoire dorsale de la larve		
	Cellules pigmentaires	Mélanocytes épidermiques et des tissus conjonctifs		
	Système nerveux périphérique	Neurones, ganglions sensoriels, ganglions sympathiques et parasympathiques, cellules gliales		
	Endocrine	Médullo-surrénale		

Figure 28 : Devenir des crêtes neurales (in Darribère Belin, 2002)

Feuillet		structures pendant l'organogenèse	Structures dans le plan d'organisation adulte
ectoderme	ectoderme neural	vésicules céphaliques (tube neural antérieur)	encéphale
		tube neural postérieur	moelle épinière
		crêtes neurales	ganglions et nerfs du système nerveux autonome, ganglions et nerfs rachidiens, mélanocytes etc
	ectoderme épidermique		épiderme structures sensorielles (ex. : cristallin)
mésoderme	chorde	chorde	(la chorde disparaît lors de la métamorphose de la larve)
	somites	sclérotome	squelette axial
		myotome	muscles striés axiaux
		dermatome	derme
	pièces intermédiaires	blastème rénal (formant le pronéphros)	reins (mésonéphros)
		ébauche des gonades	gonades
	lames latérales	splanchnopleure	muscles lisses
			myocarde, endocarde endothélium des vaisseaux sanguins
			cellules sanguines
		somatopleure	péricarde
			squelette des membres muscles des membres
endoderme			épithélium du tube digestif
			foie, pancréas
			épithélium pulmonaire
			thyroïde

Figure 29 : Bilan : devenir des 3 feuillets